It is a medium-sized deer. It has reddish brown coat with white spots on sides which make it attractive and striking. On its back lying a black stripe till the base of the tail.
Chital thrive in a variety of habitats, but avoid extremes such as dense moist (evergreen) forests and open semi-desert or desert. Moist and dry deciduous forest areas, especially adjoining dry thorn scrub or grasslands, appear to be optimal, and highest densities of Chital are reported from these habitats. Short grasslands of the terai, swampy meadows and glades adjoining forest areas, coastal dry evergreen forests, mixed forests or plantations with Teak Tectona grandis and Sal Shorea robusta are also used, and indeed over much of northern and southern India, its distribution closely matches that of Sal and Teak, respectively (Raman 2013). Chital is particularly frequent in grassland–forest interface, edge, and other ecotones (Krishnan 1972). Eisenberg and Seidensticker (1976) opined that dry deciduous habitats with scrub is the favoured habitat, while Karanth and Sunquist (1992) found mixed forests with teak plantations, moist deciduous patches and swampy grasslands to support high abundance of Chital. Kumar (2010) found that well-watered and well-protected moist deciduous forest patches in gently undulating terrain supported high Chital densities. Short grasslands are important because they provide little cover for predators such as Tiger Panthera tigris (Moe and Wegge 1994). The introduced subpopulation in Andaman Islands inhabits evergreen forests (Sankar and Acharya 2004) but native subpopulations are absent from the rainforest areas of the mainland. They tend to be only visitors to dense forests, to those adjoining more open habitats. Riverine forests within the Bardia National Park in lowland Nepal are highly used by the deer for shade and cover during the dry season. The forest also provides good foraging with regard to fallen fruit and leaves that are high in nutrients needed by the deer. Four factors were identified by Schaller (1967) as delineating Chital’s distribution: (1) the need for water; (2) the need for shade; (3) an avoidance of high, rugged terrain; and (4) a preference for grass as forage. Although several observers have noted that Chital occurs mostly in flat areas and avoids hills and slopes (Schaller 1967, Khan 1996), this may not hold in areas where preferred habitats or forage is also available on slopes (Raman 2013, Kumar 2010). It occurs in both hilly and flatter terrain, mainly the latter, in the Terai Arc Landscape of India (Johnsingh et al. 2004). In the Siwalik hills, Bhat and Rawat (1995) found that Chital preferred slopes of 11–30°, while slopes exceeding 30° were used less. Also, use of south, southeast, and east aspects was higher than of north, northeast, northwest, and west aspects, reflecting the warmer environment of the former aspects. There was no difference in average Chital density in the hills and plains (Bhat and Rawat 1995). A study of coffee estates around Bhadra Wildlife Sanctuary, India, recorded Chital widely, including in coffee areas up to 14 km of the sanctuary’s boundary (Bali et al. 2007). Habitat use varies seasonally, reflecting food availability. Chital uses more wooded habitat during the cool-dry season and early summer (November to May), where fallen fruit, leaf litter, and browse are available. In open grassland and tropical dry thorn forest, Chital density increases with the onset of monsoon rains and flush of plant growth (Mishra 1982, Moe and Wegge 1994, Khan 1996, Raman et al. 1996). In areas of their distribution with a mosaic of forest and grassland habitats, seasonal patterns in habitat use may be complex. In the Himalayan terai, Chital use of habitats with high grass availability increased substantially in the weeks following cutting and burning of grasses in January–February, attributed to fresh flush of grass growth after the burns and with the onset pre-monsoon and monsoon rains nearly two months later (Mishra 1982; Moe and Wegge 1994, 1997). Similar behaviour has been reported from the grasslands of Bandipur Tiger Reserve (Johnsingh 1983). Chital easily habituates to human presence, and herds often congregate in open areas near habitation or forest camps to spend the night, possibly due to greater safety from predators and poachers that shy away from these areas (Raman 2013). Chital eats a wide variety of plants: about 160–190 have been recorded from across the species' range. It is predominantly a grazer but consumes more fallen leaves, flowers and fruits in winter/dry season (Sankar 1994, Sankar and Acharya 2004, Raman 2013). In addition to plant soft matter, crabs (in the Sunderbans; Stanford 1951), mushrooms (in Nepal; Moe and Wegge 1994) and rarely, bark (Raman et al. 1996) are eaten. Close to human habitation, rubbish and even human faeces are occasionally taken (Raman et al. 1996). Antler and bone chewing is also common. In Wilpattu, Sri Lanka, all age and sex classes are osteophagous, but such feeding was more common in velvet-antlered males, doubtless reflecting mineral needs during antler growth and mineralisation (Barrette 1985). Chital usually drinks water once a day, more frequently in summer. This restricts them to forest tracts with assured presence of water, even if only widely scattered. In lowland Nepal, an individual’s total range incorporates a core area of about 32 hectares surrounded by foraging and cover areas of about 140 ha for females and 195 ha for males (Moe and Wegge 1994). Variation in range size occurs with site, season, sex and age of the animal. The basic social unit is a matriarchal family group, normally consisting of an adult female, her offspring from the previous year, and a fawn (Ables 1974). The usual herd is composed of two or more such family units and is often accompanied by individual deer of mixed sex and age-classes. Chital exhibits a fission-fusion system, or fluid group formation and dissolution (Schaller 1967, Mishra 1982, Barette 1991). Group composition changes frequently during feeding periods, during the rut when males frequently join groups of females (Schaller 1967), and while fleeing from predators (Dinerstein 1980). These social groupings of Chital do not remain permanent (Schaller 1967, Eisenberg and Lockhart 1972). Groups may number up to 150 or more individuals (De and Spillit 1966, Schaller 1967, Eisenberg and Lockhart 1972, Krishnan 1972, Fuchs 1977, Karanth and Sunquist 1992), sometimes even more: N.S. Kumar (pers. comm. 2008) counted 211 in one group during rainy season in Nagarahole and 203 in one group at Pench-Maharashtra near a water reservoir in summer. Measured sex ratios have all been biased towards females (Sankar and Acharya 2004 and references therein). Pariwakam (2006) observed nearly 10,500 Chital in Bandipur and estimated the proportion of Chital in different age and sex classes as stags 27%, does 57% and fawns 16%. In neighbouring Nagarahole, age-sex categories of Chital were adult stags 26%, adult does 36%, yearling males 8%, yearling females 9% and young 21% (Karanth and Sunquist 1992). Breeding can occur at any time of year but there is some peaking at any given locality (Sankar and Acharya 2004 and references therein). Heavy mortality of fawns in early weeks has been observed by several workers and fawn survival appears to be a key determinant of Chital population growth (Schaller 1967). Schaller (1967) estimated an annual fawn mortality of 48% in Kanha, Sharathchandra, and Gadgil (1975) estimated a constant monthly mortality of 26% over first nine months in Bandipur, Raman (1996) estimated a mean monthly mortality of 9.7% in Guindy. Pariwakam (2006) for the first time used a rigorous photographic capture-recapture approach to estimate the fawn mortality rate, and found it to be 66% over a six week study period in Bandipur. Further information on sociality and breeding is synthesised by Sankar and Acharya (2004) and by Raman (2013). Over a 10-year time period, Karanth and Kumar (unpublished data) have observed annual fluctuations in the Chital subpopulations in Nagarahole and Bandipur ranging between population densities of 10 to 40 animals per km2. Chital is a prolific breeder, as documented by several empirical studies of the speed of increase by newly introduced subpopulations or in those where a factor restraining subpopulations was removed (Raman 2013 and references therein). In Bhadra, following the departure from the park of human settlements and consequent removal of anthropogenic pressures on Chital and habitats, Chital subpopulations bounced back by nearly seven times in fewer than four years (K.U. Karanth and N.S. Kumar unpublished data). Karanth et al. (1999) earlier documented their empirical observations of the recovery of Chital subpopulations in Nagarahole. This and its diverse diet and habitats allow high density where threats are controlled. It is even considered to be a pest in the Andamans (Banerji 1955). The main causes of death are predation, diseases and accidents. Occasionally, stags kill each other when fighting (Sankar and Acharya 2004 and references therein). Predation is by far the major cause of Chital mortality. Older Chital stags are more susceptible to it than are younger stags (Johnsingh 1983, Patel 1992, Karanth and Sunquist 1995). This may be due to their being less vigilant during rut, to their separation from the group after the rut, or to weakening from injuries from conflicts. In Kanha, Chital remains were found in about 52% of Tiger faeces and 59% of Leopard Panthera pardus faeces analysed (Schaller 1967). In Bandipur, Chital is the most important prey in terms of the biomass taken by Dhole (78%), Leopard (55%) and Tiger (19%; Andheria et al. 2007). Even in terms of the relative number of individuals taken, Chital is the predominant prey among the three large sympatric predators (Tigers about 33%, Leopards about 39% and Dholes about 73% in Bandipur; Andheria et al. 2007). In adjoining Nagarahole remains were found in about 31% of Tiger faeces, 44% of Leopard faeces, and 50% of Dhole faeces (Karanth and Sunquist 1995). In Sariska, around 54% of the faeces of Tiger and 21% of Leopard faeces contained Chital remains (Sankar 1994). Chital remains were found in about 53% of Tiger faeces in Pench (Biswas and Sankar 2002) and 61% of Tiger faeces in Ranthambore (Bagchi et al. 2003). Each Chital spends a major portion of its life in foraging, resting, and wandering within its range, with the relative extent of these activities determined by season (Schaller 1967). In a day, peak feeding times are around dawn and dusk. There are usually two major resting periods, before dawn and mid-day (Sankar and Acharya 2004). Considerable further detail on ecology, drawn from the relative wealth of studies on the species, with each item precisely referenced to source, is provided by Raman (2013).
Grasses, leaves, and barks
Chital is protected under Schedule III of the Indian Wildlife Protection Act (1972) (Sankar and Acharya 2004) and under the Wildlife (Preservation) (Amendment) Act, 1974 of Bangladesh (Md Anwarul Islam in litt. 2008). It occurs in many protected areas. Legal protection as a species and a network of functioning protected areas are the two cornerstones of its current healthy conservation status. Subpopulations exceeding 20,000 Chital probably occur in and around a handful of conservation areas within India: the belt of about 3,000 km2 between Koh river and Haldwani including the Corbett Tiger Reserve; the Gir Protected Area (about 1,400 km2); Kanha Tiger Reserve (about 2,000 km2); and the Nilgiris–Western Ghats sector including Nagarahole, Bandipur, and Mudumalai (about 5,000 km2; Raman 2013). Protected areas support more Chitals than do non-protected areas in the Terai Arc Landscape of India, although there is not currently such a great difference in densities as with the grassland species (Barasingha Rucervus duvaucelii and Hog Deer Axis porcinus; Johnsingh et al. 2004). Ongoing habitat conversion trends outside protected areas will continue to increase the relative proportion of the total Chital population that they hold, and the maintenance of an extensive network of functional protected areas will remain the foundation of this species’ healthy conservation status. Part of this responsibility is vigilance by staff and partners of illegal poaching, which takes place at varying levels in most of the species range. Some recent cases have involved high-profile public role models, such as actors, poaching Chital and these warrant heavy court penalties. There is a strong case for prevention of livestock grazing in protected areas which hold Chital, partly to reduce risks of disease transmission, but mostly to prevent artificially low densities of Chital being forced through competition (see Threat Section). Chital subpopulations have been studied in: Corbett (De and Spillit 1966), Kanha (Schaller 1967), Bandipur (Johnsingh 1983, Kumar 2010), Nagarahole (Karanth and Sunquist 1992, Kumar 2010), Sariska (Sankar 1994), Gir (Khan et al. 1995, 1996), Guindy (Raman 1996, Raman et al. 1996), Pench (Biswas and Sankar 2002), Ranthambore (Bagchi et al. 2003) in India, Chitwan (Seidensticker 1976, Mishra 1982) and Karnali-Bardia (Dinerstein 1980; Moe and Wegge 1994, 1997) in Nepal, and Wilpattu (Eisenberg and Lockhart 1972) in Sri Lanka.
CLASS : Mammalia
ORDER : Cetartiodactyla
FAMILY : Cervidae
GENUS : Axis
SPECIES : Chital, Spotted Deer (Axis axis)
Conservation status : Least Concern
- Reach maturity at age 14-17 months in female and 30 months in male - Average lifespan is 15-20 years
- Breeding season is between April and May - Gestation lasts 7- 8 months - Give birth to 1-3 infants each time
Male weighs around 30-75 kg and female weighs around 25-45 kg.
Update : 11 April 2017